

Performance Baseline of HP Proliant Oracle Platform

Part I: CPU Performance

Technical Presentation

February 2014

1 Introduction to CPU Performance Tests

- 2 CPU and Server Configuration
- 3 CPU Benchmark Results Basic Arithmetic Operations
- 4 CPU Benchmark Results Mixed Operations with SQL built-in functions
- 5 CPU Benchmark Results Algorithms
- 6 Reviewing CPU Benchmark Results

Why measure CPU performance?

- CPU performance has a huge impact on
 - Oracle license (core factor) and maintenance cost even with Unlimited License Agreement (ULA)
 - Performance of most database operations
 - Performance of compute intensive operations

Oracle EE Core Licensing – Price Performance Ratio?

What is measured?

- CPU performance from the Oracle point of view
 - Pure processor performance
 - Including level 1, 2, 3 cache
 - No memory access
 - No I/O operations
 - Using Oracle data types and Oracle SQL built-in functions

- Speed of single thread
 - Elapsed time [s] for algorithms
 - Operations per second [ops]
- Maximum throughput of system
 - Operations per second [ops]
- Scalability
 - Throughput per process for n = {1, 2, 4, 8, ..., n}
- Efficiency of
 - Multi threading
 - Virtualization
 - Encryption

How is CPU performance measured?

- Following data types are most important for Oracle applications
 - PLS_INTEGER
 - NUMBER
 - VARCHAR2
 - DATE
- Benchware uses Oracle data types in PL/SQL to measure the performance characteristics of a CPU

Overview of CPU performance tests with Benchware test codes

Oracle CPU Performance	Test Code for	Test Code for	Test Code for	Test Code for	Test Code for
speed and throughput of arithmetic operations with typical Oracle data types and SQL built in functions; native compiled PL/SQL	SIMPLE_ INTEGER	SIMPLE_ FLOAT	PLS_INTEGER	NUMBER	VARCHAR2
Basic arithmetic operation	CPU-11	CPU-12	CPU-13	CPU-14	-
 Mixed operations and SQL built in functions 	-	CPU-22	CPU-23	CPU-24	CPU-25

Oracle CPU Performance	Test Code for	Test Code for	Test Code for	Test Code for	Test Code for
speed of recursive algorithms; native compiled PL/SQL	SIMPLE_ INTEGER	SIMPLE_ FLOAT	PLS_INTEGER	NUMBER	VARCHAR2
Fibonacci numbersn = {39, 40, 41, 42}	CPU-31	-	-	CPU-34	-
• Prime numbers [2'000'000, 2'001'000]	CPU-41	-	-	CPU-44	-

Monitoring

Speed:

Only 1 process

No contention

• No conflicts

CPU utilization, speed and throughput

						CPU	CPU	CPU		Throughput	ap
Run	Tst	Code	#N	#J	#T	busy [%]	sys [%]	user [%]	[%]	ops/sec/ [ops/	time [s]
15	19	CPU-14	1	1	1	4	0	3	96	3.682E+07	121
	20	CPU-14	1	2	1	7	1	6	93	7.364E+07	121
	21	CPU-14	1	4	1	13	1	12	87	1.461E+08	122
	22	CPU-14	1	8	1	25	0	25	75	2.901E+08	120
	23	CPU-14	1	16	1	50	1	49	50	5.570E+08	125
	24	CPU-14	1	32	1	94	0	94	6	5.794E+08	127

_	_	-		-1	ı
ρ	n	e	n	п	١

Run benchmark run id Tst benchmark test id Code benchmark test code #N number of RAC nodes

#J number of jobs, round robin distributed to all nodes

#T number of threads (PX)
[ops] operations per second
[s] elapsed time in seconds

Max throughput:

 All cpu resources are utilized

1 Introduction to CPU Performance Tests

2 CPU and Server Configuration

- 3 CPU Benchmark Results Basic Arithmetic Operations
- 4 CPU Benchmark Results Mixed Operations with SQL built-in functions
- 5 CPU Benchmark Results Algorithms
- 6 Reviewing CPU Benchmark Results

CPU architecture

CPU	E5-2690 Sandy Bridge	E5-4650 Sandy Bridge	E7-4870 Westmere
Launch date	2012	2012	2012
Clock rate [GHz]	2.9	2.7	2.4
Max number of sockets	2	4	4
#cores per socket	8	8	10
Multithreading	2-fold	2-fold	2-fold
Performance Numbers from other Benchmarks			
SPECint_base2006 (speed)	55.4	50.5	38.1
Oracle CPU speed in sys.aux_stats\$	2605	-	-

Remark:

- Oracle has an internal estimation about CPU speed in sys.aux_stats\$, but none estimation about CPU throughput.
- This value does not correlate with SPECint_base2006

Server configuration

Server	DL 380 G8	DL 560 G8	DL 980 G7 *) With HP PREMA
CPU type	E5-2690	E5-4650	E7-4870
#sockets	2	4	8 *)
#cores	16	32	80
#threads	32	64	160
Performance Numbers from other Benchmarks			
SPECint_base_rate_2006 (throughput)	670	1′200	2′070
Software			
Operating System	Linux	Linux	Linux
Oracle Database System	11.2.0.3	11.2.0.3	11.2.0.3
Benchware Performance Suite			

Oracle Licensing

Oracle Enterprise Edition	DL 380 G8	DL 560 G8	DL 980 G7 *) With HP PREMA
Oracle core license factor	x 0.5	x 0.5	x 0.5
Oracle license cost (list price 30th of January 2014)			
 Enterprise Edition (47'500) 	380'000	760'000	1'900'000
 Partition Option (11'500) 	92'000	184'000	460'000
 Diagnostic Pack (5'000) 	40'000	80'000	200'000
Tuning Pack (5'000)	40'000	80'000	200'000
Total Oracle license cost	552'000	1'104'000	2'760'000

Oracle Standard Edition	DL 380 G8	DL 560 G8	DL 980 G7
#sockets	2	4	8 *)
Oracle Standard Edition license cost (17'500 per socket)	35'000	70'000	-
Oracle Standard Edition One license cost (5'800 per socket)	11'600	23′200	-

- 1 Introduction to CPU Performance Tests
- 2 CPU and Server Configuration
- 3 CPU Benchmark Results Basic Arithmetic Operations
- 4 CPU Benchmark Results Mixed Operations with SQL built-in functions
- 5 CPU Benchmark Results Algorithms
- 6 Reviewing CPU Benchmark Results

Speed of single core / single process, arithmetic ADD operation

Speed:

- differences between slowest and fastest processor
- ~ 30% SIMPLE_INTEGER
 - ~ 45% NUMBER
 - **■** E5-2690
 - E5-4650
 - E7-4870

Throughput of all cores, arithmetic ADD operation

copyright © 2014 by benchware.ch

- 1 Introduction to CPU Performance Tests
- 2 CPU and Server Configuration
- 3 CPU Benchmark Results Basic Arithmetic Operations
- 4 CPU Benchmark Results Mixed Operations with SQL built-in functions
- 5 CPU Benchmark Results Algorithms
- 6 Reviewing CPU and Server Benchmark Results

Speed of single core / single process, mixed SQL operations

Throughput of all cores, mixed SQL operations

N processes up to saturation

copyright © 2014 by benchware.ch

- 1 Introduction to CPU Performance Tests
- 2 CPU and Server Configuration
- 3 CPU Benchmark Results Basic Arithmetic Operations
- 4 CPU Benchmark Results Mixed Operations with SQL built-in functions
- 5 CPU Benchmark Results Algorithms
- 6 Reviewing CPU Benchmark Results

- 1 Introduction to CPU Performance Tests
- 2 CPU and Server Configuration
- 3 CPU Benchmark Results Basic Arithmetic Operations
- 4 CPU Benchmark Results Mixed Operations with SQL built-in functions
- 5 CPU Benchmark Results Algorithms
- **6 Reviewing CPU Benchmark Results**

Benchmark Results

Reviewing CPU Performance

	Metric	E5-2690 Sandy Bridge	E5-4650 Sandy Bridge	E7-4870
#cores		16	32	80
#threads		32	64	160
Basic arithmetic ADD operation	Metric			
Single thread speed				
 SIMPLE_INTEGER 	[Mops]	526	409	455
 SIMPLE_FLOAT 	[Mops]	239	215	162
 PLS_INTEGER 	[Mops]	210	201	162
 NUMBER 	[Mops]	47	39	33
Throughput				
 SIMPLE_INTEGER 	[Mops]	9'770	15'900	30′500
 SIMPLE_FLOAT 	[Mops]	4'430	7'830	11′300
 PLS_INTEGER 	[Mops]	3'650	6'430	10′700
 NUMBER 	[Mops]	756	1'180	2′130

<u>Legend</u>:

[Mops] million operations per second

Benchmark Results

Reviewing CPU Performance

	Metric	E5-2690 Sandy Bridge	E5-4650 Sandy Bridge	E7-4870
#cores		16	32	80
#threads		32	64	160
Mixed arithmetic operations	Metric			
Speed				
 SIMPLE_FLOAT 	[Mops]	10.9	9.4	9.0
 PLS_INTEGER 	[Mops]	0.8	0.7	0.6
 NUMBER 	[Mops]	0.8	0.7	0.6
Throughput				
 SIMPLE_FLOAT 	[Mops]	190	338	622
 PLS_INTEGER 	[Mops]	14	25	45
 NUMBER 	[Mops]	14	25	45
Mixed string operation	Metric			
Speed				
 VARCHAR2 	[Mops]	3.0	2.7	2.2
Throughput VARCHAR2	[Mons]	48.2	81.8	154 0
• VARCHAR2	[Mops]	48.2	81.8	154.0

Benchmark Results

Reviewing CPU Performance

- If speed is required, choose 2 socket server
 - Standard Edition and Standard Edition One may be an option
- If speed and scalability is required, choose 4 socket server
 - Oracle Standard Edition may be an option
- Only if single applications need large monolithic SMP servers, choose 8 socket server

swiss precision in performance measurement

www.benchware.ch info@benchware.ch